
AD-A178 223 ON THE FIRST FAILURE TIME OF DEPENDENT MULTICONPONENT i/l

RELIABILITY SYSTEPIS(U) ARIZONA UNIV TUCSON DEPT OFI MATHEMATICS M SNAKED ET AL. 94 DEC 85 AFOSR-TR-86-0255
UNCLASSIFIED AFOSR-84-0205 F/G 12/1 NLE|h|hhhhEEEEI

,Monson.ff..lf
flmlff



*~1 1.0 'f__

1.8

F.25
Ml4..'.L'O UN f ? i



__ AD-A 170 223
SE CUR IT'

IruiDOCUMENTATION PAGE

I., l REPORT SECURITY CLASSIFICAI ION lb. RESTRICTIVE MARKINGS

- .29. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAI LABILITY OF REPORT

Unlimited lie 101
2b. DECLASSIFICATiON/DOWNGRADING SCHEDULE i ,

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

AFOSR-TR- S6-0355
6a. NAME OF PERFORMING ORGANIZATION ab. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATiON

Department of M4,athematics (if appiicable I

University of Arizona
6c. ADDRESS (City. State and ZIP Code) 7b. ADDRESS (City. State and ZIP Codel

Tucson, AZ 85721

8.. NAME OF FUNDING/SPONSORING $0. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if applicable)

U.S. Air Force Grant AFOSR-84-0205

8C. ADDRESS iCIty. State and ZIP Code) 10 SOURCE OF FUNDING NOS

AFS/MPROGRAM PROJECT TASK WORK UNIT
Buildng 41 ELEMENT NO. NO. NO. NO.

AFR *a..AB..DC 10332-6448
11, TITLE tniciijae zecuriiy Classification) ~IO V
On the first failure time of DMRS s

12. PERSONAL AUTH-ORtS)

M!oshe Shaked and J. George Shanthikumar
13s. TYPE OF REPORT 13b. TIME COVERED 141AE5 RPR ~I. u, I. PAGE COUNT

Tehnca rpot FROM _____TO ____ 1985, 4, 12 30
16. SUPPLEMENTARY NOTATION

17 CCSATI COCES 18. SUBJECT TERMS iCQninie on reverse if necessary and identify by N~ock numnber)

F E LO CROP SUB. GRDependent maintained reliability systems oeetsrc
tures, repairable and nonrepairabie compononts, performance

- process. NBU. TF1R. stochastic orderinic.
q 19 ST 9ALC on I ,n 'n re~ erse S rnecessa and daen tit by biwm~I niumb~rI

tions on the sets of rates which imply stochastic ordering between first failure times of

two such systems are found. Sufficient conditions on the rates which imply, that the first

failure time of such a system is new better than used (NBL) are given. Some results of

Barlow and Proschan (1976), Chiang and Niu (1930) and Ross (1976) are obtained as special

cases. A counterexample to an apparently strong-er result of Miller (1979) is also given.
Further results and a discussion are included.

OTCFILE COPY
20 DISTRIbUTION/AvAILABILI ry OF AI3ITRAC-T 21 AdSTRACT SLCLt4Irv C LA:SSII-ICAT(QN3 .)

.NCLASSIFIED!UNLIMITEO 2L SAME AS RPT -TI USR UnclassifiedJU

22a. N4AME OF RESPONSIBLE ,iOiVIDUAL 12t) TELEP )jNE sLumbEH 2.O IESM
(Inciua.. I rca Code,

DO FORM 1473, 83 APR EDTO F1N73 IS O8SOLE7E

...........................................................



'AFOSR-TR. 86-0355

ON THE FIRST FAILURE TIME OF

DEPENDENT MILTICOMPONENT RELIABILITY

SYSTEMS

Disk 132

by

Moshe Shaked

Department of Mathematics

University of Arizona

and

J. George Shanthikumar

Management Science Group

School of Business Administration

University of California, Berkeley

April, 1985 _____

Supported by the Air Force Office of Scientific Research, U.S.A.F., under

Grant AFOSR-84-0205. Reproduction in whole or in part is permitted for any

* purpose of the United States Government.

........................................



i |i W . . . - - '- .r-

Abstract

In this paper are considered multicomponent reliability systems wbere

component failure and repair completion rates depend on the state, ages and

current repair durations of the other components. This is a generalization of

a model of Ross (1984). Sufficient conditions on tbe sets of rates which

imply stochastic ordering between first failure times of two such systems are

found. Sufficient conditions on the rates which imply that the first failure

time of such a system is new better than used (NBU) are given. Some results

of Barlow and Proschan (1976), Chiang and Niu (1980) and Ross (1976) are

obtained as special cases. A counterexample to an apparently stronger result

of Miller (1979) is also given. Further results and a discussion are

included.

Key words and phrases: Dependent maintained reliability system, coherent

structures, repairable and nonrepairable components, performance process, NBU,

IFR, stochastic ordering, uniformizationi by a Poisson process, stochastic

monotonicity, NBU processes.
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I. Introduction.

The following model of dependent maintained reliability system (DMRS)

with n components will be studied. At any time t, each component can be

in one of two states: up (i.e., working) or de,:n (i.e., failed and is in

repair). The system state is also eiothre.. -u C and it depends on the

component states through a coherent structure function (see, e.g., Barlow

and Proschan (1975)). Let Zi(t) = 0 if component i is up at time t,

let Zi(t) = I if component i is down at time t and let

Z(t) = (z (t),...,Z (t)). Then the state of the system at time t is
I n

S(Z(t)), that is, (Z(t)) = 0 if the system is up and ¢(Z(t)) = 1 if the

system is down.

We assume that the components are repairable, that is, as t varies,

Zi(t) alternates between intervals in which it is up and in which it is down,

i = 1,2,...,n. It is assumed that a repair [respectively, working] period

starts immediately upon failure [respectively, repair completion] of a

component.

We will study fi(Z(t)), t 0} through the multivariate process

Z = {Z(t), t 3 0} taking on values in {0 11 n The process Z will he

called the performance process of the components of the DMRS. We :assume that,

with probability one, Z has ri.7ht cont:inuous srnple paths ajci that .'u ;Iny

transition epoch of Z, no more than one failure or one repair of a component

n
can take place. That is, if for Z,mE{0, 1}, 2 - m -m , then

* .%,.i=l

P{ Z(t) - Z(t-) < I for all t) =

Note that if the n components are independently maintained and the

components up and down periods are absolutely continuous then the process Z

of such an independently maintained reliability system (IMRS) satisfies the

above condition. In this paper, however, the system is allowed to he

% 7



dependent in the sense that the durations of the up and down periods of a

.component can depend on the states of the other components.

.~ Let W(Z,t) C S - {l,...,n} denote the set of the components which are

working at time t, that is, W(Z,t) {i:Zi(t) = 0} . Clearly, for each t,

W(Z, t) and Z(t) determine each other. For any set w C S, denote the

complement of w by w S - w. Thus W(Z,t) is the set of the components

which are under repair at time t.

For i e W(Z__, t) [respectively, j E W(Z, t)] let Ai(Zt)

[respectively, Bj(Z,t)] be the age of the current up [respectively, down]

period of component i [respectively, j] at time t. We will allow the

instantaneous failure [respectively, repair completion] rate Xi

[respectively, Wj] of component i [respectively, j] to depend on the set

of working components and on the ages of the current up and down periods of

the other components. Such a generalization is needed when the working

components share an overall load (see, e.g., Schechner (1984)) or when the

repair facility has limited capacity. Thus, if at some time t,

W(Z,t) = w C S, Ai(Z,t) = ai  0, i c w and B.(Z,t) = b. 0, j c w,

then for k c w, we denote the instantaneous failure rate of component k by

- ( _w,_awb), where a (a ,...,a ) when w = ailnd... j an
k ww W '1 ml

= (b. ... b. ) when W = {j1  ..'. " -m} If w [respectively, w]
nM

is empty then a [respectively, b-1 is vacuous. Formally, for k c w,
-w -

X (w,a b-)
(1.1) li r P fZ (t+At) 1 W(Z, t)=w,A (Z, t)=a ,B--(Z, t) - }

A t k -_ -- w - -w
AtOI

Similarly, define the instantaneous repair completion rate of component

E. w by

7 '
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:<- (w,w a w--
'(1.2)

(--2) rn l t P{Z (t+t)=OWt(Z,t)-wA Z,t)=a ,B-(Z,t)=b}.

A:G -- -- - W - -
a.t..

. Note that Xk(w,a -,w) and t (w, a , b-) depend on t only through the
k4 -.w --w ---W --Al

- current set of working components and the ages of the up and down periods of

the components.

Note that in general the failure or the repair completion rate of

component k, say, do not remain the same during periods between transitions

of Z. This is because a, i C w, and bj, j w, increase linearly (with

slope 1) during such periods.

In general the process {Z(t), t 0}, or equivalently {W(Z,t), t 0I,

is not Markovian. However

'.% ((Z (Z), (), (z()- ((Z, t, (Z ( ' t), VW(z, t) ( Z ' t))

t > O} is a Markov process. In the sequel we denote this process, when the

initial state is W(Z,O) = w, A (Z,O) = aw, B-(Z,O) = - by

.  [(W(Z), k(Z)(z)_ - -(z)(Z) w, a, b-I. The process Z which develops from

this initial state will be denoted by [(Z(t), t O) w, aW, b-.

When X.(w,a ,b-) and j (wa b--) are independent of (w, a , ,h-), one
I -w -Wj -w -w --w -- w

obtains an IMRS with exponentially distributed up and down times.

Various aspects of the UIRS have been investigated by Barlow and roschan

94 (:975, i9/6), ;rotm (1915, 1984), Chiang and Niu (1980)), Keilh on (974, 1975),

Miller (1979), Ross (1975, 1976) and Ross and Schechtman (1979). in

particular Barlow and Proschan (1976), Theorem 2.7, and Chiang and Niu (1980),

* ~Theorem 3.5, provide an important characterization theorem for the

,*-'.'- distribution of the time to first system failure starting with all components

new at time zero. One purpose of this paper is to extend this result to

DMRS. Special cases of DMRS have been considered by Ross (1984) and

Shanthikumar (1985).

.4. -
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In the reminder of this section we give some preliminaries on stochastic

ordering and aging properties. In Section 2, we compare stochastically the

.performance processes of two different DMRS's. The results of Section 2 are

used in Section 3 to obtain an aging property for some DMRS's. A

-counterexample for a related result (Theorem 3 of Miller, 1979) is given in

Section 3.1. A discussion, further results and applications can be found in

* "Section 4.

A random variable X is said to be stochastically smaller than

[respectively, equal to] a random variable Y if P{X>t} < [respectively, ]

st
P{Y>t} for all t. We denote this relation by X t Y [respectively,

X at Y]. A stochastic process X = {(X (t),..., X (t)), t 0 } is
1 n

.7-7 said to be stochastically smaller than [respectively, equal to] a stochastic

process Y = {(Yl(t), ... ,Yn(t)), t 0 0} if Eg(X) < Eg(Y) [respectively,

Eg(X) = Eg(Y)] for every nondecreasing functional g for which the

expectations exist.

Let X be a random variable with distribution function F( ) and

survival function F( ) E 1 - F( ). For each s, denote by [X-sfX>s] the

random variable whose survival function is F(s+ )/F(s). The nonnegative

-,- random variable X is said to be new better than used (NBU) :respectively,

rew., ,or.e than used (>MU)} if X st [X-slX>s ] {respectively,

X t[X-sIX>s]} for all s > 0. It is said to have (or to be) ,creain

failure rate (IFR) 'respectively, decreasing failure rate (DFR)I if

[X-slx>s] s> [X-s 'X>s'] {respectively, [X-sX>s] ?'[..sj>sT) whenever

s 1 s'. The latter condition is also equivalent to -log F( ) being convex

- [respectively, concavel.

I,,- .
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2. Stochastic comparisons of two DMRS's.

Consider two DMRS's with performance processes

X = {(X (t) .. X (t)), t : 0} and Y =(Y(t Y (t)), t > 0}. For
n n (j)..~

w C S -1,...,n}, c > 0, d- > 0, i c w, j C w, let ci(w,c ,d-) and
-W - - 1 4 --W

6.(w,c ,d-) be, respectively, the failure and repair completion rates

" . associated with X defined analogously to (1.1) and (1.2). Similarly, let

Yi(w,ef-) and 6j(w,e f-) be the analogous rates associated with Y.;.W-:

The main result in this section shows that under some assumptions on the

initial states of X and Y and on the rates ai, Fi. v it is' *i' i' it s

possible to find processes--A {(Xt(t),. .,Xn(t)), t a 0} and

Y = {(Y (t), ...,Y n(t)), t 0} defined on the same probability space, such

that

(2.1) X t X <Yst y,

where X < Y means P (X(t) .. . X(t)) < ( .. , Y t)), t 0 O = t. It
- n ' n

will follow then from (2.1) that X <sy.

In the statement of the next theorem and throughout the sequel, for

.i = {il, "'' , im , the notation c < e means

(c .. .. ci ) (e.,.. e , i.e. . < e. for every i c ,4. The

- m
following assumption is needed for the uniformizrition procedure which iq us- d

in the proof of Theorem 2.2:

A-sun t ion 2. t . For w C v C S and c, d-, e v, f- denote
-~________ - w -w' -vI -V

- -

;i? ' . -i, '' . ,i, i ..? - - ..i-i .. -,...-- .. - .- , --".--.- " - .- -- . ' " -, ,
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TI(w,v,c ,d-,e, f-) = ct (w, cd-) if i £ W,--w -- w -v --V i -

= 6.(v,e f-) if i e v,

= .(w,c ,d-)•~ i -w -w

+ y(v,e ,f-) if i : wf
1 v

Assume that

n
(2.2) E sup{ ni(w,v,c d-,e ,f-):w C v C S, cw< e d - <

i_ - --V -V

Theorem 2.2. Assume Assumption 2.1 and that for all choices of w,v C S and

c cw, d-, e, f- such that w C v, c < e, d- f-I, we have
W - -V -w -V -V

(2.3) ai(w,,c d-) >. (v,eef-) , i EW v,

(2.4) 8j(w,c ,d-) < 6j (v.e v ' f-) , j e vC w

Then

"--'", t [0 c d [Y S t  01 - it -1

whenever

(5. i) w' C v j

(2.5.ii) c 1 e
w w

v v

Proof. Let X > X, X < , • such a 5, exists by (2.2). Consider a Poisson

process N = {N(t), t > 01 with intensity U, . sing N, we will construct

two processes X = {X(t), t I ()1 and Y iY(t), t 01 which .atisfy (2.1)

and the desired result then follows.

:- :
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Define X(0) H (x (0),...,x (0)) where xi(O) = 0 if i C w and

1n

xi (O) = I if i w . Similarly define Y(0) ( ( ),...,Y(O)) where

yi(U) = 0 if i C v and yi(0) = 1 if i C v

Let t, be the time of the first epoch of N. For t c [0,t 1 ) let

X(t) = x(0) and Y(t) = y(O). Thus, by (2.5.i),

(2 .6)_(t) > Y(t) , t C [0, t )

Also, for t [O,t) let W1,t) =1
A -- wdl t)( t) lW1 + t I,

(,t) = + t 1, W(Yt) = v W = e 1 4-t I and
-1 6, t)I
w _

AI

C A(Y )(Yt) = f + tI , where i is a vector of ones. The dimension of

I may vary from one expression to another, but it is always possible to

determine it from the formula in which I appears.

Since c I e and dI > f it follows that A (X t) < A (Y t)
A w w^ V V W W

and B _(X, t) B_ (Y t) for all t c [0, t).
SV v

For k > 0 let tk be the time of the k-th epoch of N. Assume, by

induction, that X(t) and Y(t) have already been determined over the

interval [0, tk ) and that, for t[0, t), X(t) > Y(t) [so that

*.- W(X, t) C I,;(Y, t)] and that A4 (x, t) (  t) an('.

.... - ( ._, t) P-(Y ) ( , t)._ Denot.- !.it partic , r i ,t --
"-'" - -- 1 k- -"

by W(X, k k _ k(t tk) = ck B k ( tk kn k t k_) Li= kk

Aw w w w
A k(Y, tk-) = e n B - f so that by the induction hvptheqis

-k- k- k -k-(' tk -V V V V

@1k k k k
ck e and d4 .

w w V V
Define X(t ) and Y(t, ) as f ollows: At time, t. At 71() t 11,

_k K

component of X and ait m-ost ()ne componiet ot Y ch Is iS fl ,ws:
1.-- " k k(a. 1). With prohahi ity 1 .-I k k k ' k k thei-"I-"Z - l .(w ,v , f- k , ' _f t

'"-W W V V

processes X rnid Y d l t i i1p it ti!7e t,. In tli < caIse

P.-
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k k
X(t X(tk-), W(X, tk) w , _J(), t ck'

-k !k k kw_ tk k
k AkS- w k

'-X-tk) = ek' (tk) = Y(tk-), W(Y,t k ) = v
k w

_k k
N"-'2"I 4(Y' tk ( Y t k )-  = ev and ](_ k(Yt)=-kk'

_k v ,tkv

-I k k k k k k
(a.2). With probability _ (w -v k'- ke k' choose an index

w w v v
rE{1,...,n}, and for i ; r set X.(t k ) = i (t k-)

k . k k --k
A. " t,(C. when i C w , B(t ) = d when i C w ,

AAk k
Y.(t k Y.i(t k) A.Yt k e.i when c v ,and

k- c1 k--' 1

-k
B.(Y,tk) fk when i C V

' "k i

(b.) If r w, then set X kt 1 _ •.

B_ (X, t ) = 0. Also in this case, with probability
r k

S(v ke k (w ck k  ) [which is 1l by (2.3)] setYr(Vk  f kfk)/ar _kr_

.v ^ w y

Y (tk) = 1, W(Y,tk) = v -{r}, Br( tk) = 0, and with

k k k k k k
probability 1 - r(V e k )/ar(w ck, ) set Y (tk)r - k'")- --rw r K

k v

W(Ytk) = v and A (Y, t) = ek.
kr -'k r

Intuitively, under (b. I) one sees that component r has fai led at time

tk in the realization of X . As for Y, compontmnt r i her ai 15 or d(ol

not fail. In either case it is seen that

(2.7) X(t. ) (

(2.9) Y(, t'-

(b.2). If r g v then Set r (t , W(,tk) = - r

r k. v

A (Y t k ) Als in thik c-,e, with probabilitv
r k

k k k k k
" (w c d ) v/ (v ( [whi ch is <1 hy (2.4)] set
r 'k -k r

-' w w V

Xr (tk) = u(X t W r , A (X, k = and with
rk

ab I st.''""prohbihi li tv 1 : (~ d, )-k -  /: r\' -- f' -  k ) set Xr (t,} ) = 1,
rr h, r r '-v ,--K r 'K

W d V V
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- -k
S(x, tk ) w and B (X t )--k d .

_k r' k r

Intuitively, under (b. 2) one sees that component r has completed repair

at time tk in the realization of Y. As for X, component r either

completed repair or not. In either case it is seen that (2.7) - (2.9) hold.

-k k
(b.3). If r c w 1 v then change the state of component r in either

X or Y as follows:

(b.3.1). With probability (w, c k dk)/nr(Wk vk ,c kdk,e kk) set

w w w w v v

X (t) 0, W(X tk ) W- r}, A (R, t) 0,
r -

k kYr(tk) = Y (t k -) = 0, W(Y tk ) = v and Ar(Y t ) er k rekk,. k r-'vk kk_ k _k

(b.3.2). With probability y( k k k k k k k k set

(b.32).(V k f - /r (wv ,c k' d-+k'~ f)se
V V w w V V

kk

* Y (t) =, W(Y,t)=v-{r}, B (Yt k) = ,

"r-k-k rtk) kt )

X = = 1, W(x = w and B t d

*r k r kk r k r

- Intuitively it is seen that under (b.3.1), component r completes repair

at time tk in the realization of X . However, in the realization of Y

- component r is working anyway at time tk. Under (b.3.2) componnt r fails

at time tk in the realization of Y. However, in the realization of x

component r is under repair anyway at time tk.  In either case it is seen

that (2.7) - (2.9) hold.

Let tk+l be the rime of f 'k+l -st epoch of , >(.

: Ind Y on [t,t ;sf..'s: ro t -. ) t ( ".

and Y(t) Y(t k) Thus

_~ Ik

kH-I
Also fo t Y t, tv e (K, O t) t= 1,Vt

s' kH°°-2'

'(. ))_~ ('xt t k k _ ([t t) tkt +)t

x- t +"

tK

'"
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A (Y,t)(Y,t) = AW tk)(Ytk) + (t-tk)L W(yt)(Yt) =

-k

(_,tk)(Y_ tk) + (t-tk)1. Thus, for t E[tk,tk+l),
A W ( X, t ) (X _ t A 4 ( _ t ) (Y , t ) a n d B -( , t ( X ~ t > ( _ t ) ( Y _ ) I n

particular, denoting the realizations at ti...± tk+ -  byck+ -

k+l

k+l _ k+_ tk ), e (Y tk -)~w

k+l ^ kl kl ndk -- k+l - k+1 (Xk k+ 6 k+l
fk+l - k+l- it is seen that cwk+l < ewk+I and

w -k+1 w w
k+1 ~
dk+1 -k+ 1
V V

Thus, by induction, the procedure described above defines

X(t) and Y(t) for all t > 0.
0r

From (2.6) and (2.10) it is seen that X(t) > Y(t), t o, with

probability one. Using well known results on thinning of Poisson processes it

is not hard to verify that X X and It Y The desired result then

follows from (2.1).

Remark 2.3. In some applications of Theorem 2.2 (see, for example, Section 3)

the a. 's, 6 B's, Y i's and 6. 's (see (2.3) and (2.4)) do not depend on the

ages of the working components, c and e . The result of Theorem 2.2 then-- -

is still true even if (2 ii) does not hold. The proof of this statement is

the same as the proot of Theorem 2.2. Similarly, if the a. 's, 3. 's, y 's

and 6.'s do not depend on d- and f-, then the conclusion of Theorem 2.2

J -- V

is still true even (2.5.iii) does not hold.

Let D:{0, ln,+{o, 1} be any coherent structure function of n components

and let X = (X1(t),...,Xn(t)), t ) 0} and Y = {(Y1 (t),...,Y (t)), t 0O

be the performance processes of the two DMRS's. The times of the first

failure for each of the two DMRS's then are TX  inf{t:M(X(t)) = 1) and

,'°



. . ....- . . . .

Ty-- infjt:D(Y(t)) = 1}, respectively.

Corollary 2.4. If the two DMRS's satisfy Assumption 2.1 and (2.3) and (2.4)

and the initial states and ages of the up and down periods of the two DMRS's

satisfy (2.5.i) - (2.5.iii), then

(2.11) TX t T

Proof. Let U = {zE{0, l}n:(z) = 1} and let X and Y be as in the proof

of Theorem 2.2. Then TX = T^ - inf{t:X(t)cU}, T T inf{t:Y(t)eUj.

n
Let x and y be members of {0, I}. Note that if x j U and y x

(i.e., x. < Yi, i=1, ...,n) then y U. By Theorem 2.2, X(t) Y(t) a.s.

Hence T 4 T^ a.s. and (2.11) follows.

In a similar manner, using Remark 2.3, one can obtain:

Corollary 2.5. Assume that the failure and repair completion rates do not

depend on the ages of the working components. If the two DMRS's satisfy

Assumption 2.1 and (2.3) and (2.4) and the initial states and ages of the up

* ." and down periods of the two D.IRS's satisfy (2.5.i) and (2.. iii), thn

st

I..- 7.

Remark 2.6. The assumption used in Theorem 2.2 and Corollaries 2.4 and 2.5

that the failure and repair completion rates depend ,n the up and down ages

*-'i" ci, i. E w, dj, j - -, can clearly be modified to assuming that these rates

. depend on some increasing functions j. (ci), i 6 W, h. (d.), F- w of the

ages. This modification shows that Theorem 2.2 and Corollaries 2.4 and 2.5

are useful in applications such as follows. Suppose that an "item- is a

I,.°
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rubber container which is being filled with some liquid at a constant rate.

As the amount of liquid increases the container expands and becomes weaker and

eventually "fails" by cracking. It is often the case, that the failure rate

of the "item" (and of other "items") depend on the amount of liquid not

linearly but through some nondecreasing function g of the amount of

"- -"liquid. Theorem 2.2 and Corollaries 2.4 and 2.5 still apply in such cases.

3. NBU properties of some DMRS's.

In this section we consider only one DMRS at a time. We provide

sufficient conditions on the component dynamics so that the system lifetime is

NBU without any specific assumptions on the system structure D. For this

single DMRS, the notation of Section 1 will be used. Throughout this section

we assume:

Assumption 3.1. The failure and the repair completion rates do not depend on

the ages of the working components.

We still allow the rates to depend on the ages of the repair times.

Thus, in this section, (1.1) and (1.2) reduce to

S(wb--) 1 Zk(t+t 1 '."(Z. " A Z,t

"'..".~T 7-(, t) - k F w,

(3.2) Uk(w b-) lim P{Zk (t+t ) = 01(Z,t) w, A (Z,t) = a
(tA) t~zt

B-(Z,t) --l, k E W

Z Since in this section the X 'S and 'S do not depend on a it
k k -

follows that, given W(Z, t) = w, A (Z,t) = a and B-(Z, t) = b- , the
-w -- --V-

1- stochastic behaviour of {Z(t), t 01w, a., lr-} does not depend on a
--w --

W, '
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Thus, in this section, such a process will be denoted by {Z(t), t O1w, b-I

and when w =S =-{1,...,n), we simply denote the process then by [ZI] or

by {Z(t), t >OISI.

We will also need a counterpart of Assumption 2.1.

Assumption 3.2. For w C v C S and d-, f-, denote
-W -w5

C.(w,v,d- ,f-) = X (w,d-) if i C s
w 1V -W

= j (V, f-) if i C v

= X. (w, d-) +j.(v, f-) if i C w A v.
i -- w 2.

Assume that

n
X slipi -.(w,v,d-,f-):w C vc S, d- f-I <

1 --- v *-v -V

Theorem 3.3. Assume Assumptions 3.1 and 3.2 and tha-t f) r il w Cv c an<d

d- and f- suchi that d-
-W -V --v -V

(3.3) (' - V, f- C i w C v

1 ; -V

Then, for all choices of WI andb
w

w

Proof. We will use Thieorrm in.e. 'o t e 1)", t) t ' the right hiand

side of (3.5) -ind hy fX( t , t WV th' lo t h1illd ;iIL Ot (3.5). Then the
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a. 's, f s, -y's and 5.'s in (2.3) and (2.4) are identified as

cc(w,c ,d-) = Xi(wd-), i c w,
1 V~ V 1 -W

j (w, c ,d-) 1i j(w,_d-), j 6 w,J -w J --w

"Yi(v, e f -) = )i(v, f-), i 6 v,
1 -v-v -V

5j(v, e ,f-) = j(v, f-), j C v.

Thus, from (3.3) and (3.4) it follows that (2.3) and (2.4) hold.

Assumption 3.2 ensures that (2.2) and hence Assumption 2.1 hold.

Finally, since Y(O) = 0 a.s., it follows that (2.5.i) and (2.5.iii) hold.

stBy Remark 2.3, then, X Yt y.

Consider a DMRS which starts to function with all components being tip.

That is Z(0) = 0. Let T = inf{t:t(Z(t)) = 11 be the time until first

system failure.

Theorem 3.4. For an n-component DMRS assume that the failure and repair

completion rates satisfy the conditions of Theorem 3.3. If the system starts

to function with all components being up then T is NBU.

Proof. Fix a t > 0 and o , ome particu, ' ;li7iton

{z(s):0 s <, t} of 'Z(s):() < s < t such that '(z(s)) , s < t, that

is, given H {Z(s) = z(s), s < tj we have PT > tIH = 1. It will he
tt

argued below that for every such history Ht ,
Ot

(3.6) [(T-t)[ I t T.

It follows then, by unconditioninr in (3.,) but retaining the condition T >

- - ni! ! . .. .. .... .. . . ... .-- - - - - - - --
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t, that [(T-t)IT>t ] st T, that is, T is NBU.

The stochastic ordering (3.6) follows from Theorem 3.3 in the same manner

that Corollary 2.4 (and Corollary 2.5) follow from Theorem 2.2.

Remark. As noted in Remark 2.6, the failure and repair completion rates need

not depend directly on the down ages for the conclusion of Theorem 3.4 to he

true. This conclusion is also true when the rates depend on the ages through

some increasing functions.

Motivated by Barlow and Proschan (1976) and by Chiang and Niu (1980) we

state a slight generalization of Theorem 3.4. We assume now that the DMRS

has n (dependent) repairable components, as described in Section 1, and

also m nonrepairable components with lifetimes which are independent of each

other and of the states and the current ages and repair durations of the

repairable components.

Theorem 3.5. For a DIRS with n + m components as described above assume:

(a) the nonrepairable components have NBU lifetimes,

(b) the failure and repair completion rates of the repairable components

satisfy the conditions of Theorem 3.3,

-) alL components are new at tim- fl.

Then the time until first system failure is NBU.

The proof of Theorem 3.5 is similar to the proof of Theorems 3.3 and

3.4. The additional ingredient is that it now also contains the information

whether and which of the nonrepairable component are alive or dead at time

t. The nonrepairahlo components which are alive (according to the history

Ift) at time t have stoclhastica llv sial li r residual lives than the same new

components (here we uise the asstimption thait their lif, times are ,NBIU).

I 
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Defining on the same probability space the processes

X = {(Xl (t).. .,X (t), Xn+l (t),. ,n+m (t)), t > 0} [the last m

coordinates of X correspond to the nonrepairable components) and

Y = ((Y1 (t),...,Yn+m(t)), t ; 0} such that Y s [Z S] and

X = [Z(t+ )1H t in a manner similar to the proof of Theorem 2.2, it is

seen that X Y a.s. The result then follows by partially unconditioning as

in the proof of Theorem 3.4. We omit the details.

*The conclusion of Theorem 3.5 still holds even if (a) is relaxed as

follows. Assume as before that the lifetimes of the nonrepairable components

are independent of the states and the current ages and repair durations of the

repairable components. However, allow now the joint distribution of the

lifetimes of the nonrepairable components to be dependent in the sense of

Arjas (1981), that is, assume that

* -. (a') the nonrepairable components have MNBUI gt joint distribution with

-- t being the a-field generated by the nonrepairable components.

The following result (whose proof is similar to the proof of Theorem 3.5) is

valid:

Theorem 3.6. For a DMRS with n + m components as described above assume

(a'), (h) and (c). Then the time until first system failt- , NPU.

" .When the repairable components evolve independentL V of each other, that

is, Ai(w,d-) = i' .(w, d-) = l (d i ) then Theorem 3.5 (or 3.6) reduces to

the results of Barlow and Prosehan (1976), Theorem ".7 and Chian), and Niu

(1980), Theorem 3.5. In this context a special case of Theorem 3.3 is for a

single component subject to faiiures and repairs. Suppose that the single

component stays up (in state 0) for an exponential time period and stays down

(in state 1) for a DFR time period. Then the component performance process

"m2:

*. . . . . . . .

N * * . - . . . . . . . . . .."
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Z satisfies the stochastic monotonicity

(3.7) {z z(0) = 1, B (Z, 0) = b} t {ZIZ(O) = 0 ? for all b 0 0

(see, e.g., Barlow and Proschan (1976), Lemma 2.5, Chiang and Niu (1930),

Lemma 3.1 and Shanthikumar (1984), Theorem 5.1). Miller (1979) has

generalized this result and showed that if

(d) the up-periods are exponential,

(e) the down-periods are W 4U,

then (3.7) holds. The NWU condition is weaker than the DFR condition.

Miller's result thus tempts one to weaken (3.4) to a condition analogous to

NWU. However, in the next subsection it is shown through a counterexample

that such a modification is not possible.

3.1. A counterexample.

In this subsection we construct a class of univariate performance

processes Z = {Z(t), t 0 0} which satisfy conditions (d) and (e) but

violates (3.7).

For a fixed 3>0, 7 >C' and u>0 let V be a random variable wi

;'urvivaL fun-tion

• - -; (v-rT)G(v) = vr)if ve[(T+)r, (T+fc)r+ ], r = ,1,2, ,

e I=(r+1 if v c[(-[+-)r+,, (T+,)(r+l)], r = U, 1,2,...

A graph of -log G(v) is shown in Figure 3.1. It is easy to verify that ,

is NWU.

Let Z = IZ(t), t ' 0 be a component performance process that has

-7"
w -"...........".................". " " " ' " " " " " 

"
"' " '-" • " " " '-'" '' ". - " '"

"



VV

-+F- T+2E 
2

T+
2

E 
2 r+ 3

E

Figure 3.1



-. ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 1 -.- .'--:'t---'R9---~~-. -. -.7 . -..--- - -i _71

18

exponentially distributed up period with mean X (which will be a fixed constant

throughout this subsection) and down periods with survival function G.

Let jxs(O, min(F,-r)) and define

{z (1) (t), t 0s {Z(t), t 0Z(O) = 01,

(2) st
(Z (t), t 01 s {Z(t), t > OZ(0) = i, B(Z, 0) = E+AI.

That is, Z(2 ) starts at state 1 at time 0 with an elapsed repair time of

,+A. Since OA<T, it is clear that no repair completion will take place

for the next T time units (since U(t+t+A)/U(c+A) = 1, 0 < t T A

Then, conditioning on the repair completion instance after time r-A and no

failures until time T (recalling that Alc) one has

(3.8) p ()) = , e-e(A-h (),
A, A

whe re

h ( -e if j t X,

, '.= ,'eif ' 
= 

",

"ote that h ( is a continious function of J anid tL"It

h, (G) + e as i -

+0 as ,j 0.

- - Thus

/%

' e |q,

" ". ' ". '.-- - ",. "- - "- ' ' '' . "'', . '' . '. ', ' . ' -'': . • " ". -.'' * • -" " -"". " - - ' -; .- - ''"" ": - . -' ,
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given c)O, Ac(O, :) and c0< e ,

(*) there exists a i C such that,

for all T > A, we have

P= O} hA, () > EO.

Now consider the performance process Z ( 1 ) and its associated age

"process {B(Z(),), t 0}. When Z(M(t) 0 then BI(z() ,t) is

vacuous. For technical reasons it is convenient to define then

B1 (Z(
), t) H 0 so that BI(Z( 1 ),t) is well defined for all t n. Let

q(x) be the probability that Z ( l)  has not been in state I continuously for

more than e time units during [O,xJ, i.e.,

:-.."q(x) -P~sup B Z t) < F-1, X O

Since G(:+')/i/(i) = 1, it is clear that

fsup B (Z t) > c} -( 1 (x) = 1, 0 - x + r -'-

,< t <x
There fore

S(I x) q(x), () " x + _.

Note that for all x > 0, q(x) does not depend on i. In fa( , conditio'i1n

on the first transition of Z(  from state 0 to 1, one has

(3.9) q(x) = - x

and

q(x) x, Ii x

.. "



Taking the Laplace transforms on both sides of (3.9) and solving for

q(s) = [0 e-Xq(x)dx, one can show that

(3.10) lim q(x) = lim s q(s) = 0.
X+W s+0

Thus

given e > 0, ; > 0, F0 > 0 there exists

(**) 
a 

such that
SP{Z(T() = 0} < q(T) < Co

Now, fix E > 0, A (0,), : 0(0,e Determine = 0 as in

(*) Determine T = T as in (**). [If this T is not a A then

choose a bigger T ; 0 which satisfies (**). Such a - exists by (3.10).]

Then, for these x and 7,

(2)
P{Z (T) 0) >E > P{Z (T) 01(*) (**)

in contradiction to (3.7) and to Theorem 3 of Miller (1979).

4. r t s_ o.:_n -ii_ rtcr r.sul ts.

It is fair to say that the set of results obtained in tLus paper ing

4 the method of "putting two processes on the same probability space' is only a

sample of the kind of results which can be obtained by this method. Some

further results and applications are indicated below.

" 4.1. NBl'-ness of some first passage times. One can generalize Theorem 3.3 as

follows: Let , 2. jo, )n where 2S is the set of all subsets of
2

S.2

b. . . . . . . . . . . . . . . . . . . . . . . . . . .
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S 1 , 2 n). Denote a generic element ofL by (w,b), w C S, b 0 (.

Denote by b- the vector (bl, ... , bn) where for each i E w, bi is
-w

replaced by 0. Consider the state space I E(w,_w ), w C S, b >, 0 C

Define a partial ordering on 7 by (w,b-) < (v,b'-) if and only if

w C v and b-< b'- Consider the right continuous process
w w

Li:-:'[- (4.1) = {M(t), t 01 {(W(7, t), _-(Z t)(z, t)), t 0)

on ' where W(Z, t) is as defined in Section 1 and B-(z, t) is the vector

with i-th coordinate being Bi(Z,t) [as defined in Section 1] if i c w and

the j-th coordinate being 0 if j c w. Note that if Z is a performance

process of a DMRS which satisfies Assumption 3.2, then M is a Markov process

on$.

Using a proof similar to the proof of Theorem 3. , it can he showu, under

Assumptions 3.1, 3.2 and conditions (3.3) and (3.4), that L is

stochasticallv monotone with respect to the ordering < on , that is,

2)~Il\1 h- if W C b"'"(4.2) {I(t), t 0h:(0)=(w, -)1 tI.r(t), t>O: O)(v V ]  f Cv -- h'2

-W

to.r e h, rotation ,tis self-ex:p-.onatrr'.'. ;'i;-V tb~ . . .. ~ ~ Jp',:

vase at (4.2). A straightforward extension of Lenma r. f Ba)r ,w and

Proschan (1976) vields the following (consult MIarshall and Shaked (1 ) i 5) and

* Shaked and Shanthikumar (1984) for the measure-theoretic c,,isiderations). If

M(O) = (S, _) a.s. then ., is an NBU process on , that is, for every

""closed upper set C (a set 1; is an upper set if (v, b'-) C

whenever (v, b'-) > (w, --) for some (w, _-) C U), the first passa)e time

-- '-w --
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(4.3) TU = inft:M(t) U1  is NBU

(see Narshall and Shaked (1985) for a discussion on NBU processes with general

state spacte).

t.,.2. c:iotist; t, ,ohere.nt structures. Let (z ... ,z ) be a multistate

cohcrent str,,tr,, nction, i.e., ¢(z) is a nondecreasing function of

;, I (with a re.l range which may be more general than {U, I ). If

Assumptions 3.1 and 3. hold and if conditions (3.3) and (3.4) are satisfied

and if Z({s) - ) a.s., then a special case of (4.3) is

-T a infrt:,(Z(t)) > u is NBL', u , U.
u

4.3. Total ares of items under repair. From Theorem 3.8 of !arshal L and

Shaked (1985) it follows that for every nondecreasinj continuous fmuncton

R+ R, such that (O) 0, the random time

(4.4) S inft:, t)(Z, t)) >' u} is NBU, u

'.4<r, hr!, -- a.i dtfiP-,,e in (4.1 ,. F-r xa:"ie, tr,, (-+. ) iu

f ollws that if a DIRS sat is f ies Assumpt ions 3. 1 and 3.2 and cnditions (3.3)

and (3.) and h, as all components new at time 0, then the first time ,It whiCh

* s th, tatal a,, o t iteMI"s unde r repair exceeds u, is NBU.

' .,,. t. '< vi h a k 11 init. Cons idt,r a )MRPS as described in Section I

and p, that -i backup unit with a random life I, is available. The

b i"i p ,min wor -,, on lv dtri n) , t he d own pe r i a ds of the sv,.tecm (provid ed it has

.. ,. ... . ... . . ,.. - ,........ ................ ................. :. _
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not already failed). During the up periods the backup unit is automatically

switched off. Denote by D(t) - t(Z(u))du the cumulative down time of0 --

the DMIRS where here ¢ is a binary nondecreasing function. Backed by the

backup unit, the DMRS experiences its first actual failure at the random time

TL- inf(t > O:D(t) L}.

We will show now that if Assumptions 3.1 and 3.2 and conditions (3.3) and

(3.4) hold and if L is NBU and independent of {M(t), t 01 of (4.1),

then TL is NBU.

Since D is an increasing functional of M, it follows that for every

w C S, b- and s > 0, we have
-w

(4.5) {D t) t >0 S, 0}  t {D s+ t) t 0Z (u)=z (u) 0 <u< s, W (Z O)=w, B-(Z, s) =b-I

Since L is NBU, we have

i(4.6) L st [L-slL>s], s 0 .

'o'ldit .oning ci the historV Z(u) = (1), 0 u s, W(Z, s)

b-(;' s) b- of ' up to tire s and on IL > s :(z(kl))du, we obtain
-W' 0

from (4.5), (4.6) and the independence of N and L, that for s 0,

{D(t) - L, t O'S,[ ; U)(.,+t) - L - d(s), t

Iz(u)=z(u), 0- us, =(Z,s) w, B-(7,s) = -, L > (S

where d(s) rs '(z(u)du. Hence for s 0,
wh0 d ) -. 

-

. . . . . .
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s t

(4.7) TL > [inf{t O:D(s+t) - L - d(s) O 0(Z(u) = z(u), 0 < u S,

W(Z,s) w, B-(Z,s) . L > d(s)]°

Unconditioning in (4.7), retaining the condition TL > s, we obtain

st
TL >t[TL-Lsr h > sI, s , 0, that is, Tb is NBU.

4.5. Stochastic comparisons of up periods. We present a result that compares

the first up period (denoted by VI ) of a DMRS with its subsequent up

periods V2, V 3,... . Denote by U1 ,U 2, ... the sequence of down periods. Fix

a positive integer m. Conditioning on the state of the process M at the
M-I

random time (V.+U.) + u, u 0 0, under the condition {V > u}, one
i=1 1 1 m

easily obtains

Theorem 4.1. Under the conditions of Theorem 3.3,

(4.8) V1 5 [Vm-UI >u], u 0 0, m = 1,2,...

The above theorem is a generalization of Theorem 3.6 of Chiang and Niu

(1980). quch a generalization is needed in Slhantnlkumar (1985) rt establish

thc NBU -property of the f rst failure time c'f a depend ,t par:i I(-, (m wit'i

safety periods.

Condition (4.8) is also sufficient for the validity of some results of

Shanthikunar (1984). For example, Theorem 4.4 of Shanthikumar (1984) shows

that the first passage time to overflow, in a dam with level dependent release

rule and compound renewal input, is NBU whenever the inter-renewal times of

the input satisfy (4.8).
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4.6. DMRS's with safety periods. Consider a DMRS as described in Section

1. Suppose that every time the system is down, a random safety period is

provided. Denote the i-th safety period (at the i-th time the system switches

down) by Yi' i=1, 2, ... If the system is repaired before the safety period

is over, then the sysiem continues to operate normally. Otherwise, the

operation stops. Let T be the first time in which the operation stops.

Result 4.2. Under the conditions of Theorem 3.3, if Y11 Y2,... are NBU,

independent and identically distributed then T is NBU.

This result extends Corollary 5 of Shanthikumar (1985). The proof uses

Theorem 4.1 and its idea is similar to the proof of the result in subsection

4.4. We omit the details.

S.

.

*N *..
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